MTH 403: Real Analysis II
 Practice Assignment I

Differentiation

1. Examine the differentiability of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ assuming that $f((0,0)=0$.
(a) $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}},(x, y) \neq(0,0)$.
(b) $f(x, y)=\sqrt{|x y|},(x, y) \neq(0,0)$.
(c) $f(x, y)=\frac{x|y|}{\sqrt{x^{2}+y^{2}}},(x, y) \neq(0,0)$.
(d) $f(v)=|v| \cdot g\left(\frac{v}{|v|}\right)$, where $v=(x, y) \in \mathbb{R}^{2}$ and g is a continuous real-valued odd function on the unit circle such that $g(0,1)=g(1,0)=0$.
2. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that $|f(x)| \leq|x|^{2}$, then f is differentiable at zero.
3. Determine whether the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are of class C^{2}.
(a) $f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}$
(b) $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right), & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}$
4. Compute the derivative (matrix) of the following functions.
(a) $f(x, y, z)=\sin (x \sin (y \sin z))$
(b) $f(x, y, z)=(x+y)^{z}$
(c) $f(x, y)=\int_{a}^{x} g$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(d) $f(x, y)=\int_{y}^{x} g$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
5. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

is a C^{∞} function.
6. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $F(x, y)=f(x, y, g(x, y))$.
(a) Find $D F$ in terms of $D_{i} f$ and $D_{i} g$.
(b) If $F(x, y)=0$ for all (x, y), find $D_{i} g$ in terms of $D_{i} f$.
7. Using the Inverse Function Theorem (whenever applicable), verify where the function f has an inverse (say g) in a neighborhood of the indicated point. If g exists, then also compute $D g$ at the given point.
(a) $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$ at $(0, \pi)$.
(b) $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ at $(0,1)$.
(c) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: x \stackrel{f}{\mapsto}|x| \cdot x$ at 0 .
8. Show that a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $m<n$, is not injective.
9. For $A \subset \mathbb{R}^{n}$ open, let $f: A \rightarrow \mathbb{R}^{n}$ be a C^{r} function such that $D f(x) \neq 0$, for all $x \in A$. Show that $f(A)$ is a always open.
10. Suppose that $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ is of class C^{1} such that $f(a)=0$ and $D f(a)$ is of rank n for some $a \in \mathbb{R}^{k+n}$. Show that for a point $c \in \mathbb{R}^{n}$ sufficiently close to zero, $f(x)=c$ has a solution.
11. Let $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ be of class C^{1} such that

$$
D f(a)=\left[\begin{array}{ccccc}
1 & 3 & 1 & -1 & 2 \\
0 & 0 & 1 & 2 & -4
\end{array}\right] \text { at } a=(1,2,-1,3,0)
$$

Show that there exists a $g: B \rightarrow \mathbb{R}^{2}$ (B open) of class C^{1} such that

$$
f\left(x_{1}, g_{1}(x), g_{2}(x), x_{2}, x_{3}\right)=0
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right) \in B$ and $g(1,3,0)=(2,-1)$.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class C^{2} with $f(0,0)=0$ and $D f(0,0)=[23]$. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
g(x, y, z)=f\left(x+2 y+3 z-1, x^{3}+y^{2}-z^{2}\right)
$$

Show that $g(x, y, z)=0$ is solvable as $z=h(x, y)$ in some neighborhood of $(-2,3)$ such that $h(-2,3)=-1$.
13. Reading assignment: Read Lemma 2.10 and Theorem 2.13 from Calculus on manifolds by M. Spivak.

